サンプルコードにおける太陽光発電モジュールの直並切替問題

Ver. 2014011415
Takashi Okamoto (takashi@faculty.chiba-u.jp)

1 はじめに
本サンプルコードでは、文献[1]で定式化された太陽光発電モジュールの直並切替問題とは少し異なる記号と定式化を用いている。本稿では、実装に用いた定式化について説明する。

2 定式化
モジュール n の電流の大きさを \(x_n \in \mathbb{R}, n = 1, \cdots, N \) とし、層（並列接続されたモジュール群）k の電圧の大きさを \(x_k \in \mathbb{R}, k = 1, \cdots, K \) とする。
モジュール n とモジュール n + 1 間の接続方法を \(y_n \in \{0, 1\}, n = 1, \cdots, N - 1 \) で表し、\(y_n = 0 \) で並列接続、\(y_n = 1 \) で直列接続とする。\(y \) は、1 を区切りとして、0 の連続で 1 つの層を表す。たとえば、\(y = (0, 0, 0, 0, 1, 0, 0, 1, 0, \cdots) \) は、モジュール 1 からモジュール 5 (\(n = 1, \cdots, 5 \)) が第 1 層 (\(k = 1 \)) を構成しており、モジュール 6 とモジュール 7 (\(n = 6, 7 \)) が第 2 層 (\(k = 2 \)) を構成していることを表す。このとき、モジュール n と層番号 k を結びつける関数としては

\[
k(n, y) = \begin{cases} 1 & (n = 1) \\ 1 + \sum_{m=1}^{n-1} y_m & (n > 1) \end{cases}
\]

(1)

が考えられる。また、\(k(n) \) の逆関数に対応する \(K \) 個のモジュール番号集合

\[
N_l(y) = \{ n \mid k(n, y) = l, n = 1, \cdots, N \}, l = 1, \cdots, K
\]

(2)

を定義する。
上述の決定変数を用いて、太陽光発電モジュールの直並切替問題は

\[
\begin{align*}
\text{maximize} & \sum_{n=1}^{N} x_n x_{k(n,y)} \\
\text{subject to} & 0 \leq x_n \leq I_{MM}, n = 1, \cdots, N \\
& 0 \leq x_n \leq V_{MM}, k = 1, \cdots, K \\
& f(x_n, x_k) = 0, n = 1, \cdots, N \\
& \sum_{n=1}^{N-1} y_n + 1 = K \\
& V_{SM} \leq \sum_{k=1}^{K} x_k \leq V_{SM} \\
& I_k(x^i, y^i) = I_l(x^i, y^i), k = 2, \cdots, K \\
& 0 \leq I_k(x^i, y^i) \leq I_{MM}, k = 1, \cdots, K \\
& 0 \leq \sum_{n \in N_l(y)} I_{SC} \leq I_{MM}, k = 1, \cdots, K
\end{align*}
\]

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

(3i)

where

\[
k(n, y) = \begin{cases} 1 & (n = 1) \\ 1 + \sum_{m=1}^{n-1} y_m & (n > 1) \end{cases}
\]

(3j)

\[
N_l(y) = \{ n \mid l(n, y) = k, n = 1, \cdots, N \}, l = 1, \cdots, K
\]

(3k)
\[
f(x^i_n, x^k_n) = \begin{cases}
0 & \text{if } (x^i_n \geq I_{SC}^n \text{ and } x^k_n = 0) \\
0 & \text{if } (x^k_n \geq V_{OC}^n \text{ and } x^i_n = 0) \\
\left(I_{SC}^n - V_{OC}^n - R_{n}^{S} I_{SC}^n - R_{n}^{S} V_{OC}^n \right) \cdot \frac{1 - \exp \left[C_n \left(x^k_n + R_{n}^{S} x^i_n - V_{OC}^n \right) \right]}{1 - \exp \left[C_n \left(R_{n}^{S} I_{SC}^n - V_{OC}^n \right) \right]} - \frac{x^i_n + R_{n}^{S} x^k_n - V_{OC}^n}{R_{n}^{S H}} - x^i_n & \text{otherwise}
\end{cases}
\]

\[
I_k(x^i, y) = \sum_{n \in N_k(y)} x^i_n
\]